Publications

Publications

CSIC&WEIZMANN

Galera-Prat A, Moraïs S, Vazana Y, Bayer EA, Carrión-Vázquez M. The cohesin module is a major determinant of cellulosome mechanical stability. J Biol Chem. 2018 Mar 22. pii: jbc.RA117.000644. doi: 10.1074/jbc.RA117.000644.

IFPAN&WEIZMANN

Wojciechowski M, Różycki B, Huy PDQ, Li MS, Bayer EA, Cieplak M. Dual binding in cohesin-dockerin complexes: the energy landscape and the role of short, terminal segments of the dockerin module. Sci Rep. 2018 Mar 22;8(1):5051. doi: 10.1038/s41598-018-23380-9.

LMU

Post-Translational Sortase-Mediated Attachment of High-Strength Force Spectroscopy Handles. Durner  E, Wolfgang O, Nash MA, Gaub HE. (2017). ACS Omega, 2 (6), pp 3064–3069.

IFPAN&CSIC&UL

Non-local effects of point mutations on the stability of a protein module. M. Chwastyk, A. M. Vera, A. Galera-Prat, M. Gunnoo, D. Thompson, M. Carrion-Vazquez, and M. Cieplak. (2017). J. Chem. Phys. (in press).

IFPAN&UL

The length but not the sequence dependence of peptide linker modules exerts the primary influence on the conformations of protein domains in cellulosome multi-enzyme complexes. Rozycki, P.-A. Cazade, S. O'Mahony, D. Thompson, and M. Cieplak. (2017). Phys. Chem. Chem. Phys. 19, 21414-21425

IFPAN

Elastic moduli of biological fibers in a coarse-grained model: crystalline cellulose and beta-amyloids. A. Poma, M. Chwastyk, and M. Cieplak. (2017). (submitted).

IFPAN

Combining the MARTINI and structure-based coarse-grained approaches for the molecular dynamics studies of conformational transitions in proteins. A. Poma, M. Cieplak, and P. E. Theodorakis. (2017).  J. Chem. Theory Comp. 13, 1366-1374

IFPAN

Dual binding mode in cohesin-dockerin complexes as assessed through stretching. M. Wojciechowski and M. Cieplak. (2016). J. Chem. Phys. 145, 134102

IFPAN

Stiffness of the C-terminal disordered linker affects the geometry of the active site in endoglucanase Cel8A. B. Rozycki and M. Cieplak. (2016). Mol. Biosyst. 12, 3589-3599.

IFPAN

Coarse-grained model of the native cellulose I-alpha and the transformation pathways to the I-beta allomorph. A. B. Poma, M. Chwastyk, and M. Cieplak. (2016). Cellulose, 23, 1573-1591.

 

UL&ABENGOA&BIOPOLIS&CD&CNRS&CSIC&IFPAN&LMU&WEIZMANN

Nanoscale Engineering of Designer Cellulosomes. Gunnoo M, Cazade PA, Galera-Prat A, Nash MA, Czjzek M, Cieplak M, Alvarez B, Aguilar M, Karpol A, Gaub H, Carrión-Vázquez M, Bayer EA, Thompson D. (2016). Adv Mater. 28(27):5619-47.

WEIZMANN

Cellulosomal expansin: functionality and incorporation into the complex. Artzi L, Morag E, Shamshoum M, Bayer EA. (2016). Biotechnol Biofuels. 12;9:61. 

IFPAN&UL

Peptide recognition capabilities of cellulose in molecular dynamics Simulations. G. Nawrocki, P.-A. Cazade, D. Thompson, and M. Cieplak. (2015). J. Phys. Chem. C 119, 24402-24416.

LMU & WEIZMANN

Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy. Markus A Jobst, Lukas F Milles, Constantin Schoeler, Wolfgang Ott, Daniel B Fried, Edward A Bayer, Hermann E Gaub, Michael A Nash. (2015). eLife 2015;4:e10319.

IFPAN

Determination of contact maps in proteins: A combination of structural and chemical approaches. K. Wołek, À. Gómez-Sicilia and M. Cieplak. (2015). J. Chem. Phys. 143, 243105 

IFPAN

Statistical radii associated with amino acids to determine the contact map: fixing the structure of a type I cohesin domain in the Clostridium thermocellum cellulosome. Chwastyk M, Bernaola AP, Cieplak M. (2015). Phys Biol. 12(4):046002. 

IFPAN

Polysaccharide-Protein Complexes in a Coarse-Grained Model. Poma AB, Chwastyk M, Cieplak M. (2015). J Phys Chem B. 119(36):12028-41. 

WEIZMANN

Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. Rozman Grinberg, I., Yin, G., Borovok, I., Berg Miller, M. E., Yeoman, C. J., Dassa, B., Yu, Z., Mizrahi, I., Flint, H. J., Bayer, E. A., White, B. A., and Lamed, R. (2015). FEMS Microbiol. Lett. 362, 1-10.

WEIZMANN & DesEn

Clostridium clariflavum: Key Cellulosome Players Are Revealed by Proteomic Analysis. Artzi L, Morag E, Barak Y, Lamed R, Bayer EA. (2015). MBio. 19;6(3)

CNRS & IFPAN

Large conformational fluctuations of the multi-domain xylanase Z of Clostridium thermocellum. Różycki B, Cieplak M, Czjzek M. (2015). J Struct Biol. 191(1):68-75.

IFPAN

Statistical radii associated with amino acids to determine the contact map: fixing the structure of a type I cohesin domain in the Clostridium thermocellum cellulosome. Chwastyk M, Bernaola AP, Cieplak M. (2015). Phys Biol. 12 (4): 046002. 

WEIZMANN

Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. Dassa B, Borovok I, Ruimy-Israeli V, Lamed R, Flint HJ, Duncan SH, Henrissat B, Coutinho P, Morrison M, Mosoni P, Yeoman CJ, White BA, Bayer EA. (2014). PLoS One. 9(7):e99221. 

WEIZMANN

Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Artzi, L., Dassa, B., Borovok, I., Shamshoum, M., Lamed, R., and Bayer, E. A. (2014) Biotechnol. Biofuels 7:100.

WEIZMANN

Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions. Hamberg, Y., Ruimy-Israeli, V., Dassa, B., Barak, Y., Lamed, R., Cameron, K., Fontes, C. M., Bayer, E. A., and Fried, D. B. (2014)  PeerJ 2:e636.

WEIZMANN

Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA. (2014) Proc. Natl. Acad. Sci. USA 111, 9109-9114.

WEIZMANN

Insights into enhanced thermostability of a cellulosomal enzyme. Stern, J., Anbar, M., Moraïs, S., Lamed, R., and Bayer, E. A. (2014)Carbohydrate Research. 389, 79-84.

RSS
European Union
CSIC
Weizmann Institute of Science
Ludwig-Maximilians Universitat München
IFPAN
CNRS
University of Limerick
Designer Energy
Abengoa
Biopolis

Developed by Web4bio